https://media.npr.org/assets/img/2023/08/08/tmc_061022_mavic3_0167-1024x683_wide-c7c709176fdea03a5aaf2494b14e52341d6e433a.jpg?s=1100&c=50&f=jpeg

The vast ocean depths have long fascinated us due to their unexplored resources, and with technological advancements, the aspiration of mining the deep sea is becoming increasingly feasible. Polymetallic nodules, which are tiny metal-rich stones dispersed along the seabed, are pivotal to this expanding sector. These nodules hold precious elements including manganese, nickel, and cobalt, crucial for renewable energy systems and sought-after items like batteries. However, as the techniques for extracting these resources progress, debates about their environmental consequences remain a topic of contention among specialists.

The depths of the ocean have long held an allure for their untapped resources, and technological strides are bringing the dream of deep-sea mining closer to reality. Polymetallic nodules—small metallic-rich rocks scattered across the ocean floor—are at the center of this growing industry. These nodules contain valuable materials such as manganese, nickel, and cobalt, which are essential for renewable energy technologies and high-demand products like batteries. But as the technology for mining these resources advances, the question of its environmental impact continues to divide experts.

One such technological breakthrough came from Impossible Metals, a company that recently tested their autonomous mining robot in shallow waters. The robot, equipped with camera systems and AI-powered algorithms, demonstrated its ability to identify and avoid marine life while collecting nodules. Designed to minimize disturbance, the robot’s claw-like arms gently pluck rocks from the seabed while emitting minimal sediment. Oliver Gunasekara, CEO of Impossible Metals, claims the system is 95% accurate at detecting lifeforms as small as 1 millimeter and aims to further refine the technology to reduce sediment clouds during operations.

Despite these advancements, deep-sea mining remains deeply contentious. Environmental groups, marine researchers, and even some policymakers argue that the potential damage to ecosystems far outweighs the benefits. The debate is heating up as companies prepare to scale their operations and as international regulations governing deep-sea mining are expected later this year.

The attraction of deep-sea mining is its potential to provide essential materials for the shift to sustainable energy. Metals such as cobalt and nickel are crucial for electric cars and renewable energy storage, and supporters claim that accessing seabed resources might decrease reliance on ecologically harmful land-based mining. Nevertheless, the deep ocean remains one of the Earth’s most uncharted and least comprehended ecosystems, raising significant worries about the possible repercussions of mining.

The appeal of deep-sea mining lies in its promise to extract critical materials for the energy transition. Metals like cobalt and nickel are vital for electric vehicles and renewable energy storage, and proponents argue that tapping into seabed resources could reduce dependency on environmentally damaging land-based mining. However, the deep sea is one of the least explored and least understood ecosystems on Earth, making the potential consequences of mining a major concern.

Past experiences also highlight potential issues. In 1979, experimental deep-sea mining equipment created marks on the Pacific seabed that are still apparent today. Scientists have observed that the fauna in these impacted regions has not completely rebounded, even after over forty years. The enduring impacts of sediment clouds, noise pollution, and possible chemical pollution add more complexities to the uncertain ecological outcomes.

John Childs, a professor at Lancaster University, shares these apprehensions, noting that the leading opinion among scientists is to refrain from disrupting the deep sea until its ecosystems are more comprehensively studied. “If you’re unaware of what lies beneath, the most prudent action is to avoid interference,” he remarks.

John Childs, a professor at Lancaster University, echoes these concerns, stating that the scientific community’s predominant stance has been to avoid disturbing the deep sea until its ecosystems are better understood. “If you don’t know what’s down there, the safest course is to leave it alone,” he says.

In spite of the opposition, deep-sea mining companies are progressing, motivated by the increasing global need for rare metals. Impossible Metals is among the organizations aiming to spearhead this movement by integrating robotics with environmental concerns. The company is presently developing a larger iteration of its robotic system, encased in a 20-foot shipping container, with intentions for commercial-scale activities. This updated model will be equipped with 12 robotic arms designed to gather nodules and transfer them to surface vessels, avoiding conventional tethered systems that produce excessive noise pollution.

Gunasekara contends that deep-sea mining might lessen the environmental impacts associated with land-based mining. “Those against deep-sea mining are, in essence, supporting more harmful mining practices on land,” he states. Nonetheless, critics argue that disrupting pristine seabed ecosystems could introduce new issues instead of addressing the current ones.

Other companies are investigating different approaches. Norwegian-based Seabed Solutions is creating a saw-based cutting tool aimed at extracting mineral-rich layers while causing minimal sediment disruption. Their system employs pressurized shields and suction mechanisms to contain debris spread. Likewise, Gerard Barron, CEO of The Metals Company, is hopeful about his firm’s capacity to lessen the effects of mining operations. The company, concentrating on nodule collection in the Pacific Ocean, has tested equipment that reportedly confines sediment plumes to a few hundred meters around the mining site.

Barron dismisses the criticism of deep-sea mining as mere “posturing” and anticipates that the industry will advance under the Trump administration’s second term, which he asserts is more favorable towards resource extraction. His company intends to apply to the International Seabed Authority (ISA) later this year, with hopes to start operations once the regulations are completed.

Barron dismisses criticism of deep-sea mining as “virtue signaling” and believes the industry will gain momentum under the Trump administration’s second term, which he claims is more supportive of resource extraction. His company plans to submit an application to the International Seabed Authority (ISA) later this year, aiming to begin operations once regulations are finalized.

Balancing innovation with environmental responsibility

While some companies claim to have developed systems that minimize harm, experts remain skeptical about the feasibility of truly sustainable deep-sea mining. Ann Vanreusel, a marine biologist at Ghent University, points out that even if sediment clouds and noise pollution were eliminated, the removal of nodules would still disrupt ecosystems. Many marine organisms depend on these rocks as a foundation for survival, and their loss could have cascading effects on biodiversity.

Moreover, the cultural importance of the ocean to Indigenous communities must not be ignored. Deep-sea mining has the potential to disrupt these traditions, posing ethical questions regarding the use of common global resources.

The disputed outlook for deep-sea mining

A contested future for deep-sea mining

As the debate continues, one thing is clear: the development of international regulations will play a crucial role in determining the future of deep-sea mining. The ISA, the authority tasked with overseeing seabed resource extraction, is expected to release its first set of rules this year. These regulations will likely shape how companies operate and how environmental impacts are managed.

For now, no commercial deep-sea mining operations are underway, but the technology and interest are advancing rapidly. Companies like Impossible Metals and The Metals Company remain determined to lead the charge, touting innovations that they claim will minimize harm while meeting global demand for critical materials. However, the skepticism from environmental groups, researchers, and some policymakers suggests that significant hurdles remain.

As the world grapples with the dual challenges of transitioning to clean energy and preserving natural ecosystems, the question of whether deep-sea mining is a solution—or a new problem—will be central to the conversation. Whether these technological advancements can coexist with environmental stewardship remains to be seen, but the stakes could not be higher for the planet’s most mysterious frontier.